Skin Cancer and Mohs Micrographic Surgery

Frederic E. Mohs, MD

Chase A. Scarbrough, DO Blanchard Valley Medical Associates

© 2015 American College of Mohs Surgery | www.MohsCollege.org | www.SkinCancerMohsSurgery.org

Skin Cancer Incidence in the U.S.

- Most common type of cancer
- 5 million people treated each year, 1 in 5 will get it
- Each year, more new cases of skin cancer than cancers of the breast, prostate, lung and colon *combined*
- More people have had skin cancer than all other cancers combined over last 3 decades
- Treatment costs \$8.1 billion each year

Source: Skin Cancer Foundation

Melanoma Incidence in the U.S.

- Nearly 10,000 people will die of melanoma in 2015
- Estimate: 73,870 new cases will be diagnosed in 2015
- Melanoma accounts for < 2% of skin cancer cases, but the vast majority of skin cancer deaths
- Of the 7 most common cancers, melanoma is the only one whose incidence is increasing (~2% per year)
- *1 in 50* people will be diagnosed with melanoma

Source: Skin Cancer Foundation

Why the Rapid Increase?

- Sun exposure habits
- Prevalence of indoor tanning
- Ozone layer depletion
 - 4% 5% increase in UVB radiation reaching earth (at latitudes that cover the U.S.)⁶
- Other unknown factors

Causes of Skin Cancer

- Ultraviolet radiation a proven human carcinogen
 - UVB (290nm 320nm)
 - Most important: cause burning
 - UVA (320nm 400nm)
 - More penetrating: cause aging
- Ionizing radiation (X-rays)
- Chemicals (arsenic, coal tars)

The Impact of Indoor Tanning

- 419,000+ cases of skin cancer linked to tanning each year
- Tanning beds classified alongside plutonium, cigarettes by WHO
- More people develop skin cancer because of tanning than develop lung cancer because of smoking
- A single tanning session increases risk of SCC by 67%, BCC by 29%

Source: Skin Cancer Foundation

Causes of Skin Cancer

- "Marjolin's ulcers"
- Immunosuppression
 - Organ transplant patients
 - 10% 45% of transplant patients develop skin cancers^{7,8}
 - 2 to 3 times more SCCs than BCCs⁸
- Human papillomavirus HPV 16
- Inherited diseases XP, BCNS, albinism

- Most common cancer in America
- Usually seen in the middle-aged and elderly
- Usually due to solar radiation
- Most common locations:
 - Face nose, cheeks, forehead, periocular
 - Ears, neck, trunk, extremities
- Frequently develop another within 5 years

- Nodulo-ulcerative (most common)
- Pigmented
- Morpheaform (sclerosing, infiltrative)
- Micronodular
- Metatypical (basosquamous)
- Superficial ("multicentric")

Subtypes

• Nodulo-ulcerative (most common)

Subtypes

• Pigmented

Subtypes

• Morpheaform BCCs

- Superficial "Multicentric"
- Can be misdiagnosed as psoriasis or eczema

Course

- Slow progressive growth
- Bleeding, ulceration
- Enlarges over months, years
- Capable of extensive tissue destruction (invading muscle, cartilage, bone) if untreated

Histopathology

- Dark purple staining basal cells in mass
- Peripheral palisading
- Retraction

Sometimes what is seen at the surface is only the tip of the iceberg

Arise primarily on sun-damaged skin

• Often from precursor actinic keratosis

May occur anywhere on skin

- Face
- Lips, mouth
- Ears
- Dorsal hands
- Chest and back
- Anogenital
- Extremities

Cases where SCCs > BCCs:

- Immunocompromised patients
- Black patients
- On lips and dorsal hands
- PUVA treatment patients

Metastasis more likely in:

- Recurrent tumors
- Those with diameter > 2 cm
- Those with depth > 4 mm
- Mucosal sites, periauricular skin
- Those arising from chronic wounds (Marjolin's)
- Perineural invasion
- Immunocompromised patients

- Keratoacanthoma
- SCC from Bowen's Disease
- Verrucous carcinoma
- Well-differentiated SCC
- Acanthioloytic SCC
- Lymphoepithelioma-like carcinoma
- Desmoplastic SCC
- Adenosquamous SCC
- Cystic SCC

- Keratoacanthoma
 - Initial rapid growth
 - Exophytic nodule with central keratin-filled crater
 - Remains stable for a few months
 - May spontaneously resolve

- Bowen's Disease
 - Squamous cell carcinoma in-situ
 - Thin, erythematous, scaling plaques
 - Often progress into, and/or coincide with invasive SCCs
 - Can be misdiagnosed as psoriasis or eczema

- Verrucous Carcinoma
 - Exophytic, verrucous, or fungating tumor
 - Usually in genital or oral regions but also found on the sole of the foot
 - May be related to human papillomavirus

Non-Melanoma Skin Cancer

Sometimes what is seen at the surface is only the tip of the iceberg.

Electrodesiccation and Curettage (EDC)

- Scrape and burn lesion until a healthy base is achieved
- Cure rate dependent on experience
- Lacks margin control (pathologic confirmation)
- "Blind procedure"

Curettage

Electrodesiccation

Cryotherapy

- Liquid nitrogen
- Used frequently to destroy benign or premalignant (AKs)
- May be used to treat malignancies
- Lacks margin control
- Method of <u>blind destruction</u>

Cryotherapy

Radiation therapy

- May be very effective in certain areas
- Primary vs. adjuvant role (with surgery)
- Requires multiple treatments over 4 to 8 weeks
- Tumor may recur in more aggressive form
- Used in certain patients, such as those unable to tolerate surgery

Radiation therapy

• Malignancies may develop within irradiated skin

Lasers

- Carbon dioxide
- Erbium: YAG
- Photodynamic therapy

Surgical Excision

- Traditional excision with safety margins
 - 3 mm to 5 mm margin
- Make ellipse and close in linear fashion
- Larger lesions may require flaps or grafts
- Common method of removing skin cancers
- Approximately 90% cure rate⁹

Mohs Micrographic Surgery

- Highest cure rate (97-99%)^{9, 10}
- Spares healthy tissue
- Evaluates the entire surgical margin microscopically
- Standard of care when:
 - tumor is in critical location (cosmetic or functional)
 - tumor is recurrent
 - tumor has ill-defined margins
 - tumor is large (> 2 cm) or aggressive

Mohs Surgery

- Used on tumors with contiguous growth
- Precise microscopic margin control of tumor margins
- 100% of peripheral & deep margin examined
 - Traditional vertical sections examine less than 1%

Mohs Surgery

Recurrent Tumors

- Tumors that have recurred after prior treatment
- Can be more aggressive than original tumor
 - More difficult to cure
 - Have even higher subsequent recurrence
 - More ill-defined
 - Have higher metastatic potential

Mohs Surgery

Critical Location

(Cosmetic and Functional)

- Periorbital
- Perioral
- Periauricular
- Perinasal
- Hands and feet
- Genitalia

Mohs Surgery

Aggressive Histology

- Infiltrating BCC
- Micronodular BCC
- Morpheaform BCC
- Metatypical BCC
- Perineural invasion
- Poorly differentiated SCC
- Acantholytic SCC

Mohs Surgery

Other Cutaneous Tumors

- Dermatofibrosarcoma protuberans (DFSP)
- Atypical fibroxanthoma (AFX)
- Sebaceous carcinoma
- Merkel cell carcinoma
- Microcystic aonexal carcinoma
- Verrucous carcinoma
- Angiosarcoma

- 1. Tumor identified and debulked
- 2. Saucer-shaped piece of tissue is excised with 1-2 mm margin around and underneath curetted borders
- 3. The skin is marked for orientation
- 4. Excised tissue is color-coded and mapped by sections for orientation
- 5. Tissue sections processed with frozen horizontal technique
- 6. Mohs surgeon evaluates slides for residual tumor
- 7. If residual tumor found, it is marked on map with proper orientation
- 8. Second Mohs layer taken *only* in positive area
- 9. Process repeated until margins clear
- 10. Defect repaired with appropriate technique

Tumor identified and debulked with curette

Hatch mark(s) made on skin for orientation

Beveled incision with minimal (1-2 mm) border

Tissue removed just under curreted base

Tissue grossed, color coded and mapped

Sections embedded for horizontal sectioning

Sections processed and read by Mohs surgeon

Pathology read by surgeon and mapped

Only small area with tumor re-excised

Process continued until no tumor at margins

Highest Cure Rate

- 97-99% for primary tumors^{9, 10}
- 94% for recurrent tumors¹⁰
- Entire margin evaluated microscopically
- Cost effective
- Cure rates of other methods:
 - Standard excision 89.9%⁹
 - Destruction 81-96% <u>9, 10, 11</u>
 - Radiation 91%⁹

All of peripheral & deep margin examined

- Less than 1% examined in standard vertical sections
- Standard breadloafing of tissue provides only small sample:

Tissue Conservation

- All tumor roots are traced and removed
- Preserves maximal amount of healthy skin
- Smallest surgical defect possible
- Smallest margin but greatest confidence
- Standard excision takes guess at margins and excises additional tissue (3-5mm in each direction)

Cost-Effective^{9, 10, 11, 12}

• Outpatient office setting (not OR), pathology reading included, local anesthesia (not general), lowest recurrence

	cost	recurrence
Mohs surgery	\$1,243	1%
Destruction	\$652	4% - 19%
Office excision: perm. sections	\$1,167	10.1%
Office excision: frozen sections	\$1,400	10.1%
Ambulatory surgical facility excision	\$1,973	10.1%
Radiation therapy	\$4,558	9%

Extremely high cure rate gives Mohs surgeons confidence to repair with most appropriate technique

- Second intention healing
- Simple or complex linear closures
- Local flaps
- Full and split thickness skin grafts

Second intention healing

Complex/Layered linear closure

Local flap reconstruction

Local flap reconstruction

Local flap reconstruction

Reconstruction with skin grafts

Mohs Surgery: Summary

- Highest cure rate (97-99%)^{9, 10}
 - Entire margin evaluated
 - Fewer recurrences
- Leaves the smallest surgical defect possible
 - Preserves maximal amount of tissue
 - Increases the chance of a good aesthetic result
- Most cost-effective treatment of select tumors
 - Outpatient setting, local anesthesia, pathology included

References

- ¹Skin Cancer Foundation. Skin Cancer Facts. Available at: <u>http://www.skincancer.org/skin-cancer-information/skin-cancer-facts#general</u>. Accessed September 24, 2015.
- ⁶ Environmental Protection Agency. National Air Quality and Emissions Trends Report, 1995. Available at: <u>http://www.epa.gov/oar/aqtrnd95/report/</u>. Accessed February 16, 2004.
- ⁷ [International Transplant Skin Cancer Collaborative. Skin Cancer Facts. Available from: <u>http://www.itscc.org/PatientEdu/skinCancerFacts.cfm</u>. Accessed February 16, 2004.
- ⁸ Ong CS, Keogh AM, Kossard S, et al.: Skin cancer in Australian heart transplant recipients. *J Am Acad Dermatol*. 1999;40:27–34.
- ⁹ Martinez JC, Otley, CC. The management of melanoma and nonmelanoma skin cancer: a review for the primary care physician. *Mayo Clinic Proc*. 2001;76:1253-1265.
- ¹⁰ Nguyen TH, Ho DQ. Nonmelanoma skin cancer. *Curr Treat Options Oncol.* 2002 Jun;3(3):193-203.
- ¹¹ Kopf AW, et al. Currettage-electrodesiccation treatment of basal cell carcinomas. *Arch Dermatol.* 1977;113:439.
- ¹²Cook J, Zitelli JA. Mohs micrographic surgery: a cost analysis. *J Am Acad Dermatol*. 1998;39:698-703.

