Asthma Phenotypes & Endotypes

Nathanael Brady, D.O.

Pikes Peak Allergy & Asthma
Colorado Springs, Colorado
Assistant Professor, Adjunct Clinical Faculty
Rocky Vista University, Parker, Colorado
Definitions

- Phenotype
 - Observable characteristics without regard to underlying pathology
 - Clinical
 - Physiological
 - Biochemical
 - Response to treatment
 - Asthma phenotype results from interaction between genes and environment
 - Can change over time
 - Often overlap, making specific classification difficult
Definitions

- **Endotype**
 - Specific biological pathway that explains observable phenotypic characteristics
 - Defines an etiology and/or consistent pathophysiological mechanism
Early concepts
 ◦ Focus on duality: allergic (extrinsic) vs non–allergic (intrinsic)
 • Widely accepted, few physicians tried to determine subsets
 ◦ Single variable or trigger based
 • Exercise–induced
 • Obesity–related
 • Smoking–related
 • Allergens
 • Infection
 • Air pollution
 • Aspirin
 • Occupational
 ◦ Clinical symptom based
 • Early vs late onset
 • Exacerbation–prone
 • Asthma with fixed airway limitation
 • Cough–variant
Inflammatory Phenotypes
- 19th century eosinophilic vs non-eosinophilic
- Late 1990s & early 2000s increased research in cell types
 - 1999 Wenzel et al studied severe, corticosteroid-dependent asthma
 - Type 2–high phenotype with high levels of eosinophils
 - Type 2–low phenotype with low levels of eosinophils
 - 2006 Simpson determined 4 inflammatory subtypes:
 - Eosinophilic
 - Neutrophilic
 - Mixed granulocytic
 - Paucigranulocytic (absence of either eosinophilic or neutrophilic inflammatory pattern)
Hierarchical Cluster Analysis

- Clusters patients according to preselected variables
 - Age of onset
 - Atopy
 - Sex
 - Severity of obstruction
- 2008 UK: 16 variables, several clusters ID
- 2010 SARP sample: 32 core variables, 5 clusters ID
- 2 European cohorts: 4 clusters ID
 - 2 similar phenotypes identified
 - Early onset–allergic asthma
 - Late onset, mostly non–atopic women with high BMI
Severe Asthma Research Program (SARP) 2010

- Study of severe asthma (mild and moderate as controls)
- 9 US sites and 1 in UK
- Phenotypic characterizations
 - Questionnaires
 - Atopy
 - PFT
 - Blood tests
 - FeNO
Proposed Phenotypes & Endotypes

- T_H^2-Mediated Asthma
 - Early-Onset Allergic T_H^2 Asthma
 - Most studied phenotype, 50% of subjects
 - Most often begins childhood/adolescents
 - Hypersensitivity to environmental allergens
 - Strong correlation to other atopic disease
 - High level T_H^2 cytokines, inc total and specific IgE
 - Strong genetic component
 - Other biomarkers: FeNO, sputum eosinophils & serum periostin
 - Treatment: corticosteroids, biologics (anti-IgE, anti-IL5, anti-IL13)
Proposed Phenotypes & Endotypes

- T_h^2-Mediated Asthma
 - Late-Onset Persistent Eosinophilic Asthma
 - Recurrent exacerbations, marked eosinophilia, less atopy
 - Inflammation drivers unknown but unlikely allergic triggers
 - Decreased lung function compared to allergic asthma despite corticosteroid use
 - More severe with frequent exacerbations and poor control
 - Targeted anti–IL5 therapy
Proposed Phenotypes & Endotypes

- T_{H2}-Mediated Asthma
 - Late-Onset Persistent Eosinophilic Asthma
 - Subtype: Aspirin-Exacerbated Disease
 - Most often considered an endotype
 - Asthma, chronic rhinosinusitis with polyposis, and NSAID intolerance
 - Intense eosinophilic inflammation of nasal & bronchial tissues
 - Increased cysteiny1 leukotriene production
 - Benefit seen in some with use of cysteiny1 leukotriene receptor antagonist (montelukast) & 5-lipoxygenase inhibitors (zileuton)
Proposed Phenotypes & Endotypes

- T_H^2-Mediated Asthma
 - Allergic Bronchopulmonary Mycoses
 - Endotype characterized by a fungal hypersensitivity reaction, typically *Aspergillus fumigatus*
 - Association with cystic fibrosis, ? predisposed due to epithelial dysfunction
 - Clinical findings: bronchiectasis, mucus production, increased mold-specific IgE & IgG, eosinophilia, & obstructive lung function
 - Treatment: mainly systemic steroids and antifungal therapies, possibility for anti-IgE therapy
Proposed Phenotypes & Endotypes

- T_H^2–Mediated Asthma
 - Exercise–Induced Bronchospasm
 - Mild phenotype, likely at least partially T_H^2–mediated
 - Typically younger age onset, more commonly atopic athletes
 - Variable eosinophilic inflammation
 - Response to β–agonists and cysteinyi leukotriene receptor antagonist (montelukast)
Proposed Phenotypes & Endotypes

- Non-T_H2-Mediated Asthma
 - Neutrophilic Asthma
 - Airway neutrophilia can be associated with lower lung function, increased air trapping, & airway thickening
 - Sputum neutrophilia reported with severe and sudden-onset fatal asthma
 - Corticosteroids less effective, inhibit apoptosis promoting accumulation in the airway
 - Possible response to macrolide antibiotics
 - Paucigranulocytic Asthma
 - Corticosteroids less effective
 - Likely respond best to intensive bronchodilator therapy
 - No specific biologic therapy on horizon
Proposed Phenotypes & Endotypes

- Non-T_H2–Mediated Asthma
 - Extensive Remodeling Asthma
 - Accelerated decreased lung function and partial or irreversible obstruction
 - Profibrotic cytokines released from damaged epithelia result in fibroblast proliferation and activation
Biomarkers

Preferences
- Noninvasive
- Cost effective
- Clinically useful

Current & Potential
- Serum eosinophils
 - Easy to obtain, help stratify type-2 low or high phenotype
 - Neither sensitive or specific to asthma and no evidence of use in ICS adjustment to improve outcomes
- Sputum eosinophils
 - Correlate with airway inflammation, decreased FEV1 and increased bronchial hyperresponsiveness, and response to treatment
 - Difficult to obtain
- IgE
 - Easy to obtain, correlates with airway eosinophilic asthma and atopic asthma
 - Not specific for all asthma types
- FeNO
 - Easy to obtain, correlates with airway eosinophilic asthma and atopic asthma
 - Not specific to lower airway inflammation
- Periostin
 - Sensitive for eosinophilic and type 2-mediated inflammation in uncontrolled asthma
 - Not readily available and clinical utility as a measure of airway eosinophils unknown
Genetic and environmental interactions

- Smoking
 - Increased symptoms, accelerated decrease in lung function, corticosteroid response impairment
- Hormonal changes
- Infection
- Obesity
 - Possible phenotype: adult-onset, non-\(T_H2\), minimal atopy, female, symptomatic
 - Treatment with weight loss, possibly hormonal therapies
 - Study showing improved airway responsiveness to methacholine challenge after bariatric surgery
Treatment: IgE-blocking strategies

- FDA Approved
 - Omalizumab
 - Biomarkers
 - Antigen specific IgE
 - Improved response with higher FeNO and serum eosinophils >300 cells/uL
Treatment: IgE-blocking Strategies

- No longer in development
 - Quilizumab
 - Anti-M1 prime mAb depleting IgE-expressing B cells to block IgE production
 - Blocked early and late responses 30%, reduced serum IgE 40%
 - No therapeutic benefit in clinical field study
 - Lumiliximab
 - Anti-CD23 mAb, cross-links B cell CD23 to decrease IgE production
 - Decreased serum IgE by 40%
 - Failed clinical field trials
 - Ligelizumab
 - Anti-IgE mAb, 50–greater fold affinity compared to omalizumab
 - Inhibited skin test response, reduced IgE levels > omalizumab
 - No better effect than omalizumab in clinical field study
Treatment: IL-5-blocking Strategies

- FDA Approved
 - Mepolizumab
 - Reduced exacerbations by 53% (1.74 vs 0.83) & FEV1 increase ≈100ml in pivotal phase 3 trial
 - Possible greater benefit with eosinophil count >500
 - 80% reduction in exacerbations, FEV1 increase 132–222ml
 - Increased asthma QoL scores
 - Decreased ED visits and hospitalizations
 - Reduced corticosteroid dose >50%, with improved symptom score and reduced exacerbations
FDA Approved

- **Reslizumab**
 - Reduction in asthma exacerbation frequency (0.41 \& 0.5) in 2 phase III studies
 - Improved FEV1, QoL scores and asthma control parameters
 - Short-term study (16 week) >200ml increased FEV1

- **Benralizumab**
 - Greater benefit with higher eosinophil counts, reduction of exacerbations 45–51%
 - Improved FEV1 106–159ml
 - Improved symptom scores and QoL
 - Benefit seen at 4 weeks
In Clinical Trials

◦ Tralokinumab
 • Anti–IL–13 mAb
 • Trials with variable results, decreased exacerbations in patients with high periostin or DPP–4 levels

◦ Dupilumab
 • Anti–IL4Rα mAb, blocks both IL–4 and IL–13
 • Biweekly home administration with reduced exacerbations (0.27 vs 0.9) and pulmonary function regardless of blood eosinophil level, results better in >300 counts (0.2 vs 1.04)
 • Possible option for patients with lower eosinophil counts?

◦ AMG–157
 • Anti–TSLP mAb
 • Thymic stromal lymphopoietin (TSLP) promotes T_H2 inflammation
 • Clinical study with reduced allergen–induced early and late asthmatic response, blood and serum eosinophils, and FeNO
Treatment: T_H^2-Mediated Asthma

- No longer in development
 - Lebrikizumab
 - Anti-IL-13 mAb
 - Initial study showed improved FEV1, more so in patients with higher periostin levels
 - Phase 3 trials with mixed results, development stopped
What does this all mean for treating asthmatic patients?

Traditional Guidance-Based Asthma Management

- **Diagnosis**
- **Assessment of asthma severity**
 - Avoidance of triggers and management of comorbidities:
 - Laryngopharyngeal reflux
 - Subacute bacterial infection
 - Sinus disease
 - Sleep apnea
 - Vocal cord dysfunction
- **Stepwise approach to therapy:**
 - SABA, ICS alone, ICS + LABA, ICS + LTRA, oral corticosteroids, biologic therapy

Personalized Approach to Asthma

- **Diagnosis**
- **Determination of whether asthma is refractory**
- **Characterize subtype**

Phenotype
- Gender
- Age
- Obesity
- Ethnicity
- Smoking Hx

Endotype
- Blood biomarkers
 - IgE
 - Eosinophils
 - Periostin
 - Cytokines
- Sputum biomarkers
 - Eosinophils
 - Neutrophils
 - Cytokines
- Other
 - FeNO

Genotype

- **Assess comorbidities**
- **Tailored therapy**
Questions or Comments?
Resources