Cutaneous Squamous Cell Carcinoma: A Focus on Diagnosis and Staging

Chase A. Scarbrough, DO, FAOCD, FAAD
Board-Certified Dermatologist
Mohs Micrographic Surgery & Cutaneous Oncology Fellow
The Ohio State University Wexner Medical Center
Disclosures

I have no relevant disclosures related to this presentation.
Basics of Cutaneous Squamous Cell Carcinoma

- Second most common cutaneous malignancy
- UV radiation
- High cure rate if treated early
- New emerging medical & surgical treatments

Fig. 1. Keratinocyte & Melanocyte Stem Cell (Bologna)
Fig. 2. (Bologna)
How big of a problem is this in the US?
Let's dive into the data…

Pritesh S. Karia, MPH, Jiali Han, PhD, and Chrysalyne D. Schmults, MD, MSCE
Boston, Massachusetts
What are the facts?

- Over 700,000 new cases of cutaneous SCC diagnosed yearly
- Approximately 4% of patients will develop nodal metastasis
- 1.5% will die from the disease
- “High-risk” subset has been identified
Risk Factors

Environmental Exposure

Phenotype

Genetic Syndromes

Predisposing Clinical Settings

Immunosuppression
Immunosuppression

Solid Organ Transplant Patient 65-250 x the risk of cSCC!!

Heart & Lung Transplant

Less risk for hematopoietic stem cell transplant

Chronic Lymphocytic Leukemia

Multi-disciplinary approach needed for this population
What about the actinic keratosis?

0.075% - 0.096% per lesion per year

Typical patient has 7.7 AKs

Rate of development is 10.2% in 10 years

Some studies have shown rates higher (13-20%)
Identification of SCC
Squamous cell carcinoma in-situ

Most commonly an erythematous and slightly scaly plaque

Sun-exposed areas

Elderly individuals

Younger individuals with significant photodamage

Anogenital regions can also be affected
Fig. 7. (Bologna)
Invasive squamous cell carcinoma

Vast array of clinical presentations

Sun-exposed areas

Exophytic or plaque-like

Associated scale to dense hyperkeratosis
Fig. 8.(Bologna)
Fig. 10. (Bologna)
Factors associated with recurrence & metastasis

Tumor diameter >2cm
- 2x risk of recurrence
- 3x risk of metastasis
- 19-fold increase in disease-specific death

Tumor depth >2mm
- 10-fold risk of recurrence
- 11-fold risk of metastasis

Perineural Invasion
- 47% recurrence and metastatic rate after wide excision
Staging of squamous cell carcinoma
Evolution of Staging - AJCC 6

- All nonmelanoma skin cancers were grouped together for the purpose of staging

- Incorporated at least 82 different types of tumors

- This included cutaneous SCC

- Staging remained unchanged for 20 years until 2010
Cutaneous SCC receives its own staging system with AJCC 7

TX Primary tumor cannot be assessed

T0 No evidence of primary tumor

Tis Carcinoma in situ

T1 Tumor ≤ 2 cm in greatest dimension with < 2 high-risk features

T2 Tumor > 2 cm in greatest dimension with or without one additional high-risk feature, or any size with ≥ 2 high-risk features

T3 Tumor with invasion of maxilla, mandible, orbit, or temporal bone

T4 Tumor with invasion of skeleton (axial or appendicular) or perineural invasion of skull base

High-risk features include depth (>2-mm thickness; Clark level $\geq IV$); perineural invasion; location (primary site ear; primary site nonglabrous lip); and differentiation (poorly differentiated or undifferentiated).
What data come out of AJCC 7?

- 256 high-risk cutaneous SCC
T2 to T4 were clinically indistinguishable!

- Only 2% of cohort were stage T3/T4
- Most of the poor outcomes were clustered in stage T2
 - 69% of local recurrences
 - 83% of nodal metastasis
 - 92% of deaths
- Heterogenous T2 group
Alternative staging system was proposed

- Alternative staging system was based off of 4 risk factors

1. Poorly differentiated histologic characteristics
2. Diameter greater then 2 cm
3. Perineural Invasion
4. Invasion beyond subcutaneous fat
<table>
<thead>
<tr>
<th>Alternative T Staging System</th>
<th>Definition</th>
<th>Patients in Study Cohort, No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>In situ SCC</td>
<td>Not included</td>
</tr>
<tr>
<td>T1</td>
<td>0 Risk factors<sup>a</sup></td>
<td>134 (52)</td>
</tr>
<tr>
<td>T2a</td>
<td>1 Risk factor<sup>a</sup></td>
<td>67 (26)</td>
</tr>
<tr>
<td>T2b</td>
<td>2-3 Risk factors<sup>a</sup></td>
<td>49 (19)</td>
</tr>
<tr>
<td>T3</td>
<td>4 Risk factors<sup>a</sup> or bone invasion</td>
<td>6 (2)</td>
</tr>
</tbody>
</table>

^aRisk factors include tumor diameter 2 cm or greater, poorly differentiated histologic characteristics, perineural invasion, and tumor invasion beyond the subcutaneous fat (excluding bone invasion, which automatically upgrades tumor to alternative stage T3).
What was the goal of the alternative staging system?

- Break up the large AJCC T2 group
- T2a had rare poor outcomes
- T2b had significantly higher rates of poor outcomes
- T3 tumors were extremely rare
- Eliminated the need for a T4 category
October, 2016, 8th edition is released
Head & Neck cSCC, AJCC 8 Tumor Staging

<table>
<thead>
<tr>
<th>pT category</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx</td>
<td>Primary tumor cannot be identified</td>
</tr>
<tr>
<td>Tis</td>
<td>Carcinoma in situ</td>
</tr>
<tr>
<td>T1</td>
<td>Tumor <2 cm</td>
</tr>
<tr>
<td>T2</td>
<td>Tumor ≥2 cm but <4 cm</td>
</tr>
<tr>
<td>T3</td>
<td>Tumor >4 cm or minor bone erosion or PNI or deep invasion</td>
</tr>
<tr>
<td>T4a</td>
<td>Tumor with gross cortical bone/marrow invasion</td>
</tr>
<tr>
<td>T4b</td>
<td>Tumor with skill base invasion and/or skull base foramen involvement</td>
</tr>
</tbody>
</table>
Summary of the changes in AJCC 8

- T2 is limited to tumors >2cm, but <4cm

- T3 has been expanded to include tumors >4cm, or have 1 or more risk factors

- Risk factors for T3 upstaging
 - Invasion beyond subcutaneous tissue or >6mm
 - Perineural invasion
 - Minor bone invasion

- T4a = gross cortisol bone/marrow invasion; T4b = skull base or foramen involvement
Comparison of Tumor Classifications for Cutaneous Squamous Cell Carcinoma of the Head and Neck in the 7th vs 8th Edition of the AJCC Cancer Staging Manual

Pritesh S. Karia, MPH; Frederick C. Morgan, BSPH; Joseph A. Califano, MD; Chrysalyne D. Schmuls, MD, MSCE
A Cumulative incidence probability for local recurrence

T1 vs T2: P < .001
T2 vs T3: P = .63
T3 vs T4b: P = .006
Cumulative incidence probability for nodal metastasis

- T1 vs T2: \(P < .001 \)
- T2 vs T3: \(P = .78 \)
- T3 vs T4b: \(P = .18 \)
Cumulative incidence probability for disease-specific death

T1 vs T2: \(P < .001 \)

T2 vs T3: \(P = .79 \)

T3 vs T4b: \(P < .001 \)
Cumulative survival probability for overall survival

- T1 vs T2: $P = .60$
- T2 vs T3: $P = .55$
- T3 vs T4b: $P = .16$

Overall Survival (Probability)

Follow-up Time, mo
Table 3. Evaluation of the Seventh and Eighth Editions of the AJCC Cancer Staging Manual (AJCC 7 and AJCC 8) Tumor Classification System Homogeneity and Monotonicity

<table>
<thead>
<tr>
<th>Tumor Classification</th>
<th>LR</th>
<th>NM</th>
<th>DSD</th>
<th>Overall Events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Homogeneity: Proportion of Poor Outcomes Occurring in Low Tumor Categories, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AJCC 7 T1/T2</td>
<td>30 of 34 (88.2)</td>
<td>21 of 24 (87.5)</td>
<td>8 of 13 (61.5)</td>
<td>59 of 71 (83.1)</td>
</tr>
<tr>
<td>AJCC 8 T1/T2</td>
<td>12 of 34 (35.3)</td>
<td>7 of 24 (29.2)</td>
<td>2 of 13 (15.3)</td>
<td>21 of 71 (29.6)</td>
</tr>
<tr>
<td></td>
<td>Monotonicity: Proportion of Poor Outcomes Occurring in High Tumor Categories, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AJCC 7 T3/T4</td>
<td>4 of 34 (11.8)</td>
<td>3 of 24 (12.5)</td>
<td>5 of 13 (38.5)</td>
<td>12 of 71 (16.9)</td>
</tr>
<tr>
<td>AJCC 8 T3/T4a/T4b</td>
<td>22 of 34 (64.7)</td>
<td>17 of 24 (70.8)</td>
<td>11 of 13 (84.6)</td>
<td>50 of 71 (70.4)</td>
</tr>
</tbody>
</table>

Abbreviations: DSD, disease-specific death; LR, local recurrence; NM, nodal metastasis.
Table 4. Number of Tumors of 680 Upgraded and Downgraded Using the AJCC Cancer Staging Manual, Eighth Edition (AJCC 8) Tumor Classification System

<table>
<thead>
<tr>
<th>Changes From AJCC 7 to AJCC 8</th>
<th>Tumors, No.</th>
<th>Disease-Related Outcomes, No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LR</td>
</tr>
<tr>
<td>Upgrading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1→T2</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>T1→T3</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>T2→T3</td>
<td>96</td>
<td>18</td>
</tr>
<tr>
<td>Downgrading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2→T1</td>
<td>101</td>
<td>4</td>
</tr>
</tbody>
</table>

Abbreviations: DSD, disease-specific death; LR, local recurrence; NM, nodal metastasis.
What are the good things that came from AJCC 8?

- More tumors (17.8%) were classified into high tumor categories
 - Accounted for 70.4% of poor outcomes
 - 64.7% of Local Recurrence
 - 70.8% of Nodal Metastasis
 - 84.6% of Disease Specific Death
- >4cm in size or the addition of one high risk factor classifies a tumor at stage T3
 - Shifted many tumors from T2 to T3
 - Lead to superior homogeneity and monotonicity, with greater separation between low- and high-risk tumors
What areas still require some improvement?

- T4 remains rarely used
 - 0, T4a tumors & 2, T4b tumors

- 95% confidence intervals overlapped between T2 & T3 for all end points
 - Clinicians should recognize that some T2 tumors may develop poor outcomes

- Though acknowledged, poor differentiation was removed as a risk factor for inclusion in tumor classification
 - Accounts for most of the failures in stage T1 & T2
 - Of the cases that were elevated from T1 or T2 to stage T3, only those with poor differentiation had an elevated risk of poor outcomes.
Cutaneous squamous cell carcinoma
Management of advanced and high-stage tumors

Syril Keena T. Que, MD, a Fiona O. Zwald, MD, b and Chrysalyne D. Schmults, MD, MSCE a
Boston, Massachusetts, and Washington, District of Columbia
High-risk SCC*
BWH stage T2b/T3
AJCC-8 stage T4

- Palpable lymphadenopathy
 - Ultrasound-guided FNA or biopsy confirmation of lymph node metastasis
 - Positive
 - Negative
 - CT of lymph node basin
 - Lymph node biopsy
 - Positive
 - Negative
 - CT q4-6 months for 2 years** for radiologic monitoring
 - Positive
 - Negative
 - Lymphadenectomy ± ART of lymph node basin ± chemotherapy
 - Positive
 - Negative
 - Consider CT or serial ultrasound q4-6 months for 2 years for continued nodal surveillance
 - Consider SLNB or ultrasound
 - Positive
 - Negative
Monitoring

- Low-risk
 - Every 6 months

- High-risk (Stage T2b)
 - Every 4 months
 - Skin & lymph nodes
 - Imaging?
Take-home Points

- BEWARE the squamous cell

- Cutaneous squamous cell carcinoma is a very common malignancy with potentially serious consequences

- Staging tumors allows clinicians to stratify the risk of poor disease related outcomes

- Monitor your patients closely or refer to a board-certified dermatologist for regular skin exams
Thank You!

chase.scarbrough@gmail.com
(419) 306-9295