Mass Casualty Incidents

Gerry Maloney, DO, FACOEP, FACEP
Associate Chief, Emergency Department, Cleveland VA Medical Center
Associate Professor, Medicine & Emergency Medicine, CWRU
LTC, MC, USAR
Disclosures

• None
• This presentation does not necessarily represent the views of the US Department of Defense or Department of Veterans Affairs
Objectives

• At the conclusion of this presentation, learners will be able to answer the following questions:
 • What is a mass casualty incident?
 • What is the epidemiology of mass casualty incidents in the US?
 • How is a mass casualty incident run, both in the field and hospital?
 • What types of injuries are commonly seen?
 • What can I do at the scene to help?
Mass Casualty (aka MasCal)

• Definition:
 • Any incident in which the number of patients exceeds the capacity of the local healthcare system (EMS & hospitals) to care for them

All MasCals are Local
Types of Incidents

• Can be mundane
 • Pile-up with multiple patients
 • House fire with several patients
 • Drive-by shooting with several patients

• Or Not
 • Explosions
 • Train derailments
 • Mass shootings
 • Chemical incidents
 • Acts of war
MasCal as a Disease?

• The number of mascal incidents is on the rise
• Greatest proliferation is in mass shootings
Epidemiology of Mass Shootings
Epidemiology of Mass Shootings
Epidemiology of Mass Shootings
Differences in Mass Shootings vs Conventional Shootings

• Weapons typically are assault rifles
 • Large capacity high-velocity rounds
 • Handguns (lower capacity and smaller lower-velocity rounds)

• Larger cavitation and tissue destruction

• Shooters frequently more experienced using their weapons
 • Better accuracy and better “kill shots”

• Mass shooters frequently not concerned with escape
 • Keep killing until they die
Ballistics 101

• Depends on muzzle velocity (rifle vs handgun vs shotgun) and type of projectile (bullet size, hollow point vs jacket, shot)
• Temporary vs permanent cavity in tissue
• Yaw (tumble) of projectile in the body
Ballistics 101
Ballistics 101
Blast Injuries
Blast Injuries

• What are they
• What should I look for
• What don’t I want to miss
Types of Blasts
OK for Real Now

• Thermonuclear
• Thermal
• Chemical
• HE
Thermonuclear Blasts

• Greatest potential destruction
• Least likely type of injury you will see
 • Hardest to obtain
 • Most likely that you will be vaporized as well
• Combine the features of many other types of blast injuries with radiation and intense heat
• Major addition is radiation exposure
• Otherwise similar to HE blasts
Thermobaric

• AKA fuel-air explosives
• Mix of gases or droplets in air
• Causes explosion with intense flame component
Examples of Thermobarics

• Dust/air mixtures in silos
• Slowly-escaping natural gases
• BLEVE (boiling liquid-expanding vapor explosions)
• Munitions
 • Usually designed to be BLEVE-type blasts
HE Explosives

• Have a high reaction rate
 • Aka the conversion is quick
 • Called a detonation
 • Generate a blast wave
Anatomy of an Explosion

• Consider the case of HE blasts
• Detonation creates gas at high temp & pressure
 • Example of C4-over 4 million PSI
• This causes blast wave
 • Rapid omnidirectional pressure front
• This rapid rise in pressure is called overpressure
Anatomy of an Explosion

• Overpressure
 • Primary cause of injury/death
 • Peak overpressure wave of 60-80 psi lethal
 • Caused by transfer of energy to the body
Determinants of Injury

- Peak of overpressure wave
- Duration of overpressure
- Medium of explosion
- Distance from initial blast wave
- Focusing
 - Reflection off other surfaces
 - Worse if it occurs in enclosed space
Determinants of Injury

- Greatest damage occurs at transition points of tissue
 - IE tissue/bone junction
- Pressure-sensitive locations
 - Barotrauma-lungs, eardrums
Determinants of Injury

- Blast winds
 - Large release of gaseous products causes “winds”
 - These can cause a great deal of secondary injury
 - Even low intensity blasts can cause a great deal of winds
Injury Patterns
Specific Injuries

• Primary blast injury
 • Due to pressure wave
 • Seen with HE explosives

• Secondary injury
 • From projectiles
 • Body turned into a projectile
 • Heat
Specific Injuries

• Burns
 • Manage as any other burns
 • Burns rarely in isolation
 • ALWAYS look for additional injuries
Specific Injuries

• Sharpnel
 • Beware penetrating trauma
 • Pinholes can herald big trouble
 • Have an exceptionally low threshold to consider vascular injury
 • Beware complex devices
 • Shrapnel that is radioactive
 • Covered with feces, blood, etc
Specific Injuries

• Amputations
 • Seen commonly with HE blasts
 • A great deal of force released at bone/ST junction
 • Tearing mechanism
 • Usually limits vasospasm
 • Can have massive blood loss
 • Need urgent hemorrhage control
 • TK
 • Guillotine amputation
Specific Injuries

• Barotrauma
 • Can be immediate or delayed
 • Barotrauma in one anatomic region usually means in others
 • Beware isolated “TM perf”
 • Frequently develop associated barotrauma
Barotrauma

• Overpressure causes alveolar rupture
• Leads to pneumothorax, SQE, pneumomediastinum
• Most common pulmonary injury is contusion
• Can also develop systemic air embolism
• CXR usually diagnostic
Barotrauma

• Eardrum
 • May be associated with other barotrauma
 • With lower pressures may see hemotympanum without rupture
 • May not see eardrum injury in certain cases
 • Wearing ear protection
 • Body in water, head out of water during underwater explosion
Barotrauma

• Most common type of blast injury barotrauma is to ears
 • 35% of OKC blast victims had TM involvement
• Severe injury may have permanent hearing loss
Barotrauma

• GI
 • May see pneumoperitoneum
 • May not see pneumoperitoneum; may have perf or hemorrhage instead
 • Colon site of most GI barotrauma
 • Most air filled part of GI tract
 • Look for signs of acute abdomen
 • Presentation frequently subtle
Neurotrauma

- Can be from penetrating injuries
- Can also be from overpressure
 - Can be DAI
 - Also concussion
- Repetitive trauma from blast injuries current research topic
 - Using markers like NFG proteins and s100b
Secondary Injuries

• Can be from debris
• Can be planned
 • Suicide vests with ball bearings
 • EFP’s
 • Cluster munitions
Other Principles

• Scene safety
 • If terrorist incident suspected remember that second device may be around
 • Unsafe structures
 • WTC
 • Radiation if nuclear blast
Management Principles

• ICS (Incident Command System)
 • Mandated by FEMA for hospitals/municipalities/EMS
 • Provides organized structure from scene of incident into hospital
 • Open communication between field and facility
 • Provides for triage, initial stabilization, and transport from scene
 • Hospital-surge capacity, additional resources
The ICS
Field Management

- Most EMS agencies use START (Simple Triage and Rapid Transport)
 - Assigns patients to one of 4 color codes
 - Black-dead
 - Red-immediate
 - Yellow-urgent
 - Green-walking wounded
- Patients without a pulse are usually not resuscitated
- Patients who are critically injured take priority
- Coordinated response with field & hospital IC’s to distribute patients appropriately
Hospital Management

• IC staff (usually senior leaders) staff command center
• Call in appropriate backup staff; open OR’s; extra radiology & lab availability; blood supply; open up outpatient areas as ED overflow
• Plan for inpatient surge capacity
 • Open up unused floor beds
 • Facilitate rapid discharge and bed cleaning
• Support staff on hand for debriefing of providers (EMS & hospital) after the incident is over
Summary

• Mass casualty incidents becoming more common
• Most likely MCI’s are shooting or explosives
• Most shootings likely to be with military type weapons
• Blast injuries have unique injury patterns rarely encountered in civilian life
• Hospitals need surge capacity plan to handle a sudden influx of severe patients
Questions?
gerald.maloney@va.gov