Diagnostic Imaging Dilemmas

Gerry Maloney, DO, FACEP
Dept of Emergency Medicine
MetroHealth Medical Center
Disclosures

• None
Objectives

• Using a case based scenario, at the end of this session, the learner will be able to discuss the best imaging techniques for:
 – Minor head trauma
 – Neck injuries
 – Abdominal pain
 – Suspected pulmonary embolism
Frontmatter

• Vast increase in use of diagnostic imaging
 – CT scan use tripled between 1996 & 2010
 – MRI use quadrupled

• Concerns about $$

• Radiation exposure risks

• Pitfalls in diagnosis
 – Misreads
 – False + & -
Decision Support?

• Advent of widespread HER’s has brought clinical decision support

• Data mixed
 – Some show decrease in # of tests ordered, others don’t

• Clinical policies from multiple specialty societies

• ACR Appropriateness Criteria
ACR Appropriateness Criteria

• Evidence based guidelines for imaging use
• Updated frequently when new evidence arrives
• Sometimes in conflict with other specialty societies
• www.acr.org/appropriateness-criteria
Radiation Risk

• Rads, rems, grays, sieverts......
• Most risk is based on extrapolation
• Disconnect between physicians and radiation physicists
Case 1

• An 18 month old is brought in by his parents after a fall at home
• He has a left frontal goose egg and an otherwise normal exam
• No LOC, vomiting, or behavior changes
• What imaging does he need?
Case 1

- CT Head
- Skull Xrays
- Nothing
Decision Rules for Avoiding CT in Children with Head Trauma

<table>
<thead>
<tr>
<th><2 Years</th>
<th>≥2 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mental status</td>
<td>Normal mental status</td>
</tr>
<tr>
<td>No scalp hematoma except frontal</td>
<td>No loss of consciousness</td>
</tr>
<tr>
<td>Loss of consciousness for <5 seconds</td>
<td>No vomiting</td>
</tr>
<tr>
<td>Nonsevere injury mechanism*</td>
<td>Nonsevere injury mechanism*</td>
</tr>
<tr>
<td>No palpable skull fracture</td>
<td>No signs of basilar skull fracture</td>
</tr>
<tr>
<td>Normal behavior</td>
<td>No severe headache</td>
</tr>
</tbody>
</table>

*Severe injury mechanism was defined as motor vehicle crash with patient ejection, death of a passenger, or rollover; pedestrian or bicyclist without helmet struck by a motorized vehicle; fall of >1.5 m for children ≥2 years and >0.9 m for children <2 years; or head struck by high-impact object.
Case 1a

- Now you have a 59 year old male patient arriving by EMS
- He was found face down on a sidewalk
- He smells strongly of ethanol
- He has a small abrasion above his left eye
- He moves everything symmetrically but doesn’t follow commands
- No other trauma noted
New Orleans Rule

Box 1. New Orleans Criteria

Computed tomography is required for patients with minor head injury with any 1 of the following findings. The criteria apply only to patients who also have a Glasgow Coma Scale score of 15.

1. Headache
2. Vomiting
3. Older than 60 years
4. Drug or alcohol intoxication
5. Persistent anterograde amnesia (deficits in short-term memory)
6. Visible trauma above the clavicle
7. Seizure
"Regardless of what your wife says, you do have a backbone and I have the X-ray to prove it."
Case 2

• You have a 30 yo male pt with sudden onset right flank pain
• He appears uncomfortable, is vomiting, and has hematuria
• His abdomen is nontender
• What is the best study?
Case 2

- CT scan of the abdomen w/o contrast
- Kidney US
- IVP
- Nothing
Ultrasonography versus Computed Tomography for Suspected Nephrolithiasis

US vs CT for Stones

- 3638 Patients were assessed for eligibility
 - 229 Were ineligible
 - 309 Declined to participate before eligibility confirmed
 - 324 Were eligible, but declined to participate

- 2776 Underwent randomization
 - 17 Withdrew before any data collected
 - 1 Underwent point-of-care ultrasonography
 - 8 Underwent radiology ultrasonography
 - 8 Underwent computed tomography

- 2759 Were included in intention-to-treat population

- 908 Were assigned to point-of-care ultrasonography
 - 32 (3.5%) Were lost to follow-up
 - 876 Had at least one follow-up assessment

- 893 Were assigned to radiology ultrasonography
 - 49 (5.5%) Were lost to follow-up
 - 844 Had at least one follow-up assessment

- 958 Were assigned to computed tomography
 - 32 (3.3%) Were lost to follow-up
 - 926 Had at least one follow-up assessment
Case 2a

- You have a 75 yo female patient with diffuse abd pain & vomiting
- He has a hx of afib, CAD & HTN
- Her coumadin was recently stopped due to multiple falls
- Her abdomen is diffusely tender with involuntary guarding
- What is the best imaging study?
Case 2a

• Ultrasound
• CT abd/pelvis with IV contrast only
• CT abd/pelvis with IV & PO contrast
• Angiography
ACR Appropriateness Criteria

<table>
<thead>
<tr>
<th>Appropriateness Designation</th>
<th>Score</th>
<th>AHA/ACC Rec.</th>
<th>Level of Evidence</th>
<th>Additional Published Characteristics Appropriate Imaging Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriate</td>
<td>9</td>
<td>I</td>
<td>A - B</td>
<td>- Wide spectrum of patients studied</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>IIA</td>
<td>A - B</td>
<td>- No patient selection bias (consecutive)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>IIB</td>
<td>C</td>
<td>- All patient image results verified ("gold standard" or prognosis)</td>
</tr>
<tr>
<td>Uncertain</td>
<td>6</td>
<td>IIB</td>
<td>B - C</td>
<td>- Blinded interpretation</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>IIB</td>
<td>B - C</td>
<td>- Reproducible acquisition and interpretation</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>IIB</td>
<td>B - C</td>
<td></td>
</tr>
<tr>
<td>Inappropriate</td>
<td>3</td>
<td>III</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>III</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>III</td>
<td>A - B</td>
<td></td>
</tr>
</tbody>
</table>
ACR Appropriateness Criteria

Table 1. Variant 1: Acute mesenteric ischemia

<table>
<thead>
<tr>
<th>Radiologic procedure</th>
<th>Rating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTA abdomen with contrast</td>
<td>9</td>
<td>Fast noninvasive study that also evaluates other causes of abdominal pain.</td>
</tr>
<tr>
<td>Arteriography abdomen</td>
<td>8</td>
<td>Allows diagnosis and treatment with a single procedure.</td>
</tr>
<tr>
<td>X-ray abdomen</td>
<td>7</td>
<td>Initial study for patients with acute abdominal pain.</td>
</tr>
<tr>
<td>MRA abdomen without and with contrast</td>
<td>7</td>
<td>Longer when compared to CT. Limited in distal thrombus/embolism or nonocclusive mesenteric ischemia. See statement regarding contrast in text under “Anticipated Exceptions.”</td>
</tr>
<tr>
<td>US abdomen</td>
<td>6</td>
<td>High sensitivity and specificity for venous occlusion, and can assess other causes of abdominal pain.</td>
</tr>
<tr>
<td>MRA abdomen without contrast</td>
<td>3</td>
<td>Lower sensitivity and specificity than MRA that incorporates contrast.</td>
</tr>
</tbody>
</table>
Case 2b

• A 28 yo 27 week pregnant f pt presents with RLQ pain x 24 h
• She is tender in her R mid and lower abd
• She ahs nausea, anorexia, no fevers
• Her FHT are in the 160’s
• She has a WBC count of 16000
• What is the bets imaging study?
Imaging for Appendicitis in Pregnancy

Flowchart:
- Suspected Appendicitis
 - 32 weeks or more
 - <15 weeks
 - >15 weeks
 - BMI
 - <30
 - Ultrasound
 - >30
 - Ultrasound
 - If ultrasound is non-diagnostic
 - MRI (or CT*)
 - MRI (or CT*)
Case 3

- A 24 yo, 32 weeks pregnant f pt presents with pleuritic chest pain and acute dyspnea
- She has had an otherwise uncomplicated pregnancy
- She is tachycardic with symmetric lower extremity edema, a sat of 94%, and a clear CXR
- What imaging study should be done next?
What About Radiation in Pregnancy?

<table>
<thead>
<tr>
<th>X-Ray Examinations</th>
<th>Fetal Absorbed Dose (mGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical spine (AP, lat)</td>
<td><0.001</td>
</tr>
<tr>
<td>Chest X Ray (PA, lat)</td>
<td>0.002</td>
</tr>
<tr>
<td>Thoracic Spine X Ray (AP, lat)</td>
<td>0.003</td>
</tr>
<tr>
<td>Abdomen X Ray (AP)</td>
<td>1–3</td>
</tr>
<tr>
<td>Lumbar Spine X Ray (AP, lat)</td>
<td>1</td>
</tr>
<tr>
<td>Limited IVP</td>
<td>6</td>
</tr>
<tr>
<td>Barium Enema</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CT Examinations†</th>
<th>Fetal Absorbed Dose (mGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT Head</td>
<td>0</td>
</tr>
<tr>
<td>CT Pulmonary Angiogram</td>
<td>0.2</td>
</tr>
<tr>
<td>CT Abdomen</td>
<td>4</td>
</tr>
<tr>
<td>CT Abdomen Pelvis</td>
<td>25</td>
</tr>
<tr>
<td>CT KUB</td>
<td>10</td>
</tr>
<tr>
<td>Background for 9 months of pregnancy†</td>
<td>0.5 - 1</td>
</tr>
</tbody>
</table>
What About Radiation in Pregnancy?

<table>
<thead>
<tr>
<th>PREGNANCY PHASE</th>
<th>WEEKS POST CONCEPTION</th>
<th>RADIATION EXPOSURE</th>
<th>POSSIBLE CONCEPTUS HEALTH EFFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-implantation</td>
<td>0 to 2 weeks</td>
<td>Diagnostic exposure (less than 100 mGy [10 rad]) Greater than 100 mGy (10 rad)</td>
<td>Embryo implantation failure; embryo death by cytogenic damage Lethality</td>
</tr>
<tr>
<td>Organogenesis</td>
<td>2 to 7/8 weeks</td>
<td>Less than 50 mGy (5 rad) Greater than 100 mGy to 150 mGy (10 rad to 15 rad)</td>
<td>No increase of significant congenital malformations above background incidence Malformations due to call killing; growth retardation; cataracts, skeletal anomalies, central nervous system abnormalities: microcephaly, mental retardation (risk of severe mental retardation is not increased over background levels)</td>
</tr>
<tr>
<td>Fetal Development</td>
<td>8/9 weeks to 15 weeks</td>
<td>Less than 50 mGy (5 rad) 50 mGy to 500 mGy (5 rad to 50 rad) Greater than 500 mGy (50 rad)</td>
<td>Cancer is the only detectable health risk Dose dependent growth retardation, IQ reduction Increased risk of growth retardation/spontaneous abortion, major malformation, IQ reduction, severe mental retardation</td>
</tr>
<tr>
<td>Mid</td>
<td>16 weeks to 25 weeks</td>
<td>Less than 50 mGy (5 rad) 50 mGy to 500 mGy (5 rad to 50 rad) Greater than 500 mGy (50 rad)</td>
<td>Cancer is the only detectable health risk Not likely to produce health risk except cancer Increase in major malformations and spontaneous abortions; dose dependent growth retardation, IQ reduction, severe mental retardation</td>
</tr>
<tr>
<td>Late</td>
<td>26 weeks to delivery</td>
<td>Less than 50 mGy (5 rad) 50 mGy to 500 mGy (5 rad to 50 rad) Greater than 500 mGy (50 rad)</td>
<td>Cancer is the only detectable health risk Dose dependent neonatal death and spontaneous abortion, major functional anomalies or malformations unlikely</td>
</tr>
</tbody>
</table>

Imaging Options for Suspected PE

Suspected PE in pregnancy

- **Yes**
 - Leg symptoms?
 - **Yes**
 - CUS
 - +
 - Treat
 - **No**
 - CXR
 - Abnl
 - CTPA
 - Nondx
 - Technically inadequate
 - Stop
 - +
 - CUS, CTPA
 - Treat
 - NI
 - V/Q
 - +
 - Stop
 - -
 - CUS, CTPA
 - Treat
 - Stop
Case 3

• A 35 yo m pt is brought in after a motor vehicle collision
• He is intoxicated but alert and can describe the accident well
• He has mild tenderness to his cervical paraspinal muscles but no stepoff or point tenderness to the spine
• What imaging does he need?
Case 3

- Cervical spine XR
- CT cervical spine
- MR cervical spine
- Nothing
Table 2. NEXUS Criteria For Radiographic Evaluation Of The Cervical Spine Following Blunt Trauma\(^{91}\)

1. Midline cervical tenderness
2. Focal neurologic deficits
3. Altered level of consciousness
4. Evidence of intoxication
5. Painful distracting injury

Table 4. Canadian Criteria For Detecting Clinically Important Cervical Spine Injury\(^{46}\)

<table>
<thead>
<tr>
<th>High Risk Factors</th>
<th>Low Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 65</td>
<td>Simple rear-end MVC</td>
</tr>
<tr>
<td>Fall > 1 meter</td>
<td>Not pushed into oncoming traffic</td>
</tr>
<tr>
<td>Axial loading injury</td>
<td>Not hit by large bus or truck</td>
</tr>
<tr>
<td>High speed MVC/ rollover/ejection</td>
<td>No rollover</td>
</tr>
<tr>
<td>Motorized recreational vehicle or bike collision</td>
<td>Not hit by high-speed vehicle</td>
</tr>
<tr>
<td>Presence of paresthesias</td>
<td>Sitting position in the ED</td>
</tr>
<tr>
<td></td>
<td>Ambulatory anytime</td>
</tr>
<tr>
<td></td>
<td>Delayed onset of neck pain</td>
</tr>
<tr>
<td></td>
<td>No midline cervical tenderness</td>
</tr>
</tbody>
</table>
CT or Xray?

• Ct largely replacing XR at trauma centers
 – Last EAST guidelines recommend CT as first line
• XR may miss up to 25% of clinically significant spinal injuries
• XR only recommended for low risk neuro intact patients
• C spine fx may be associated with blunt cervical vascular injury
Conclusions

• Multiple data sources to help make imaging recommendation
• If in doubt ask your radiologist
• Take home points
 – CT similar radiation to fetus as VQ
 – US or MRI best initial imaging for suspected appy in pregnancy
 – CT replacing plain films for c spine injury
Questions?

- gmaloneydo@gmail.com